Hardware Additions to Microprocessor
Architecture Aid Software Development

M. W. Sievers

Communications Systems Research Section

Simple additions to a microprocessor’s architecture provide a programmer
with two powerful debugging aids. These aids are useful both for initial software
development and for routine system integrity diagnostics. One of these aids may
be expanded into a virtual machine system.

l. Introduction

The job of a hardware engineer is to design hardware,
which, all too often, is done at the expense of the software
engineer who must use the hardware. Whether through
oversight or done intentionally to save space and hold
down costs, hardware frequently lacks features not
specifically required but that could simplify the task of the
software engineer.

When designing microprocessor systems, whether they
be simple dedicated controllers or complex general-
purpose systems, the basic architecture can be constructed
with increasingly fewer integrated circuit packages. A
hardware engineer mesmerized by the simplicity of the
architecture will put his design efforts into building
interfaces for the devices the system must communicate
with. The hapless programmer may be fortunate enough
to get displays and single-step features to help him debug
his software—but these are barely adequate when long and
complex programs are being checked out.

28

In this article an Address Trap (breakpoint) mechanism
and last-in-first-out (LIFO) Address Stack are suggested as
two additions to the basic microprocessor architecture
whose functions are solely to aid the programmer. These
devices provide the programmer with the ability to
specify address breakpoints and to trace program execu-
tion back through N instructions, where N is the depth of
the stack. Both devices, plus interface logic and buffering,
have been designed for an INTEL 8080-based system
using approximately 25 integrated-circuit packages.

Section V is devoted to a proposal for implementing a
microprocessor virtual machine system via data and
address traps. The interested reader not familiar with
virtual machine concepts should consult Refs. 1-7.

1l. Basic Architecture

Consider Fig. 1 in which a basic microprocessor
architecture is illustrated. Three buses, the Address Bus,
Data Bus, and Control Bus, interconnect the Central

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-35



Processing Unit (CPU) and the various devices on the
buses. This configuration is similar to the PDP-11 UNIBUS
(Ref. 8) in which any device may be treated as memory or
input-output at the hardware designer’s option.

The Address Trap and Address LIFO are connected to
the bus structure as shown. The Address Trap generates a
one-bit DISABLE flag which is used to disable memory.
This flag bit could properly be considered part of the
Control Bus but is separated for clarity.

lil. Address Trap

Frequently a programmer debugging new software
desires to know if a given address in his program space is
accessed. Further, it is often desirable to check partial
results in the calculation of a complex function. In either
case, the basic microprocessor instruction set does not
lend itself to performing these tasks without considerable
overhead.

An Address Trap which causes an interruption in the
normal program stream is ideal for implementing the
features described above. It is a very simple hardware
device that jams an instruction on the Data Bus when the
Address Bus contains an address equal to the one stored in
a register in the trap. The advantage this device affords
over inserting patches into the code being executed is that
since the user program is left intact, no overhead is
required for keeping track of where patches are made.

A block diagram of an Address Trap is shown in Fig. 2.
The trap is assigned three sequential addresses in upper
memory space making it appear as a memory device to
the CPU. Two addresses are used for the Address Register
which holds the address to be trapped. The third address
is a register within the Control Unit that enables and
disables the trap mechanism.

The Comparator compares the contents of the Address
Register with the Address Bus. When the two are equal,
the Comparator signals the Control Unit via EQUAL. If
the trap is enabled, a Memory Disable signal is generated.
This signal is used to turn the memory off so that the Data
Bus is free for use by the trap. When the CPU signals its
desire to read an instruction from memory, the trap jams
its own instruction onto the Data Bus. In the case of an
8080, this instruction is an RST (RESTART) instruction
which is a single-byte unconditional CALL.

The routine called by the trap could display the
registers, dump memory, enter a new address into the
trap, etc. If the trap address is set within a loop, for

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-35

example, then the results of each pass through the loop
could be displayed. Additionally, if input-output devices
are placed in memory space, then attempts by the CPU to
access these devices may be trapped.

IV. Address LIFO

There are two things that are certain in the life of a
programmer: he will erase a file he shouldn’t have and he
will write a program that mysteriously branches to never-
never land. Therefore, an Address LIFO is proposed as a
means of tracing backward through a program to hasten
finding the errant code in the solution of the latter
problem.

Assume a special stack whose PUSH function was not
under direct CPU control but whose POP function was.
Each time the CPU references an instruction in memory,
the address of the reference is pushed into the stack. At
any time the CPU could disable the PUSH operation and
examine the elements in the stack. This would permit a
programmer to trace the steps of his program back to the
depth of the stack. Should his program branch outside of
its space, this stack could be examined to see where the
program came from.

A block diagram of an Address LIFO is illustrated in
Fig. 3. As with the Address Trap, it is assigned sequential
addresses in upper memory. A Control Unit determines
that the CPU is referencing an address within its allowed
address space and pushes that address into the stack. A
flip-flop within the Control Unit enables and disables the
PUSH operation.

When the CPU desires to access the stack, it commands
the Control Unit to cease the Push operation. It can then
POP the stack without pushing the stack access routine
addresses into the stack.

The LIFO may be used in conjunction with the trap
described in Section III. Among other things, the trap
routine could fetch the contents of the stack and display it
for the programmer.

V. A Microprocessor Virtual Machine System

Before going into the proposed microprocessor virtual
machine system architecture, a brief review of virtual
machines will be offered. The interested reader should
consult Refs. 1-7 for details.

A virtual machine (VM) is defined as an efficient,
isolated copy of a real machine. This concept can be

29



explained by the virtual machine monitor (VMM) shown
in Fig. 4. The VMM is a program that has the following
characteristics:

(1) It provides an environment for other programs that
is essentially identical to the real hardware environ-
ment of the original machine.

(2) Programs executing in this “virtual” environment
suffer only small decreases in execution speed.

(3) The VMM exerts complete control over the system
resources.

A virtual machine can be thought of as the environment
created by the VMM.

A typical form of a VMM and VM implementation is to
define a dual-state architecture. Two distinct modes of
system operation are defined, privileged and nonprivi-
leged, in which all critical functions are performed in the
privileged state. The VMM operates in the privileged
mode and performs such functions as direct handling of
interrupts, performing input-output, and changing ma-
chine state. Each VM under the control of a VMM
performs input-output to virtual devices and has the
effects of its interrupts simulated by the VMM.

Instructions that must be executed in a privileged mode
are called sensitive instructions. An instruction is control
sensitive if it attempts to change the amount of resources
available to the processor or affects the processor mode.

30

An instruction is said to be behavior sensitive if its
execution depends on a real memory address or the
processor mode. All non-sensitive instructions are said to
be innocuous.

In order for a machine to be virtualizable, the
architecture must be such that when a sensitive instruc-
tion is executed in a non-privileged machine state, a trap
occurs and the privileged state is entered. Consider Fig. 5
which shows the configuration of Fig. 1 in a slightly
modified form. The Address Trap device now contains a
Base and Bounds Register. The VMM loads these registers
with the base and bounds of the VM it desires to execute.
Should the VM attempt to access memory outside of these
boundaries, an address trap occurs.

A Data Trap is similar in function to the Address Trap
except it traps data rather than addresses. It contains a
Content Addressable Memory (CAM), which holds the so-
called sensitive instructions. When the Data Bus contains
one of these instructions when the CPU is doing an
instruction fetch, a trap occurs. The other use for this
device is to implement instruction macros.

Upon power-up, the VMM can queue VMs and choose
one for execution. Upon a trap or after a given delay, the
VMM can suspend operation of one VM and start another.
Although the details of the machine state switching have
not been worked out, a little thought should prove them
to be tractable.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-35



References

. Buzen, ]J. P, and Gagliardi, I. O, “The Evolution of Virtual Machine
Architecture,” Proc. NCC, AFIPS Press, Montvale, New Jersey, pp. 291-300,
1973.

. Gagliardi, I. O., and Goldberg, R. P., “Virtualizable Architectures” Proc. ACM
AICA International Computing Symposium, Venice, Italy, 1972.

. Galley, S. W., “PDP-10 Virtual Machines,” Proc. ACM SIGARCH-SIGOPS
Workshop on Virtual Computer Systems, Cambridge, Massachusetts, 1969.

. Goldberg, R. P., Virtual Machine System, Report No. MS-2686, MIT Lincoln
Laboratory, Lexington, Mass., 1969.

. Goldberg, R. P., “Hardware Requirements for Virtual Machine Systems,” Proc.
Hawaii International Conference on Systems Sciences, Honolulu, Hawaii,
1971.

. Goldberg, R. R, “Architecture of Virtual Machines,” Proc. NCC, AFIPS Press,
Montvale, New Jersey, pp. 309-318, 1973.

. Popek, G. J., and Goldberg, R. P., “Formal Requirements for Virtualizable Third
Generation Architectures,” CACM, Vol. 17, No. 7, July 1974.

. PDP-11 UNIBUS Interface Manual, Digital Equipment Corporation, Maynard,
Massachusetts, April 1970.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-35

31



32

ADDRESS BUS
CENTRAL
PROCESSING DATA BUS
UNIT
CONTROL
BUS
MEMORY INPUT- ADDRESS ADDRESS
OUTPUT TRAP LIFO
DISABLE
Fig. 1. Basic microprocessor architecture
DATA BUS ADDRESS ADDRESS BUS
REGISTER COMPARATOR
EQUAL
CONTROL
CONTROL BUS UNIT
DISABLE

Fig. 2. Block diagram of Address Trap

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-35



VMM
RANDOM
UP/DOWN | ADDRESS ACCESS PHYSICAL
COUNTER MEMORY MACHINE
HARDWARE
s
<
Q
CONTROL BUS l
CONTROL DATA BUS
UNIT M, VM, o o o VM
ADDRESS BUS
Fig. 3. Address LIFO Fig. 4. Virtual machine monitor
ADDRESS BUS
CENTRAL DATA BUS
PROCESSING
UNIT
CONTROL BUS
INPUT- ADDRESS DATA TRAP
MEMORY OUTPUT TRAP
CONTROL
BASE e AND CONTROL
COMPARE
BOUNDS CAM

Fig. 5. Microprocessor based virtual machine system architecture

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-35

33



